

Approximation Algorithms

Lecture 3

Evaluation Policy

- 3 Assignments, one each at the end of Feb, March, April: 15% each
- Attendance and surprise quizzes: 15%
- Endsem: 40%

Last Time

- ❑ Dual Rounding
- ❑ Weak Duality Theorem
- ❑ Strong Duality Theorem
- ❑ Complementary Slackness Condition
- ❑ Primal Dual Method

Today

- ❑ Dual Fitting for Weighted Set Cover
- ❑ Randomized Rounding for Weighted Set Cover
- ❑ Basics of probability and analyzing randomized algorithms

Today

- ❑ Dual Fitting for Weighted Set Cover
- ❑ Randomized Rounding for Weighted Set Cover
- ❑ Basics of probability and analyzing randomized algorithms

Problem Definition (Recall)

- Universe $U = \{e_1, \dots, e_n\}$, a family $F = \{F_1, \dots, F_m\}$ of subsets of U
- Set F_i has weight w_i for all $i \in [m]$
- Output a collection of F_i 's of minimum total weight whose union is U

Greedy Algorithm (Part of reading exercise)

- $I \leftarrow \emptyset$
- $\widehat{F}_j \leftarrow F_j$ for all $j \in [m]$
- while I \leftarrow is not a set cover
 - $\ell \leftarrow \arg \min_{j: \widehat{S}_j \neq \emptyset} \frac{w_j}{|\widehat{F}_j|}$
 - $I \leftarrow I \cup \{\ell\}$
 - $\widehat{F}_j \leftarrow \widehat{F}_j \setminus F_\ell$ for all $j \in [m]$

Theorem: The greedy algorithm is an H_n approximation for weighted set cover, where $H_n = 1 + \frac{1}{2} + \dots + \frac{1}{n}$ is the n -th Harmonic number.

Greedy Algorithm (Part of reading exercise)

- $I \leftarrow \emptyset$
- $\widehat{F}_j \leftarrow F_j$ for all $j \in [m]$
- while I is not a set cover
 - $\ell \leftarrow \arg \min_{j: \widehat{S}_j \neq \emptyset} \frac{w_j}{|\widehat{F}_j|}$
 - $I \leftarrow I \cup \{\ell\}$
 - $\widehat{F}_j \leftarrow \widehat{F}_j \setminus F_\ell$ for all $j \in [m]$

Theorem: The greedy algorithm is an H_n approximation for weighted set cover, where $H_n = 1 + \frac{1}{2} + \dots + \frac{1}{n}$ is the n -th Harmonic number.

Next: A different analysis for the above algorithm using the dual LP

Dual LP

$$\max \sum_{e \in U} y_e$$

(D)

$$\sum_{e : e \in F_j} y_e \leq w_j \quad \forall j \in [m]$$

$$y_e \geq 0 \quad \forall e \in U$$

- Let g denote the maximum cardinality among the sets in F
- **Theorem:** The greedy algorithm gives an H_g -approximation to the weighted set cover.

$$\underbrace{1 + \frac{1}{2} + \dots + \frac{1}{g}}$$

- Guarantee strictly better than H_n whenever $g < n$

- Let g denote the maximum cardinality among the sets in F
- **Theorem:** The greedy algorithm gives an H_g -approximation to the weighted set cover.

- Guarantee strictly better than H_n whenever $g < n$

□ Proof of Theorem

- We first construct a dual solution, i.e, set values for y_i for $i \in [n]$
- Assume that element e_i is covered for the first time when set F_j was added to the cover

□ We set $y_i \leftarrow \frac{w_j}{|\widehat{F}_j|} \cdot \frac{1}{H_g}$

for each $e_i \in U$

$e_i \in \widehat{F}_j^1$ when F_j
was
added
to the
cover

When I add a set F_j to the cover,

- Cover weight increases by w_j

Each of the $|F_j|$ uncovered elements pay a price of $\frac{1}{H_g} \cdot \frac{w_j}{|F_j|}$ at most

Suppose $|F_{j'}| = g$ and $e' \in F_{j'}$

~~in each iteration of greedy, exactly one el. of $F_{j'}$ gets covered.~~

$\frac{w_{j'}}{g} \geq \frac{w_l}{|F_l|}$ \rightarrow greedy prop.

Price paid by e'

$$= \frac{1}{H_g} \cdot \frac{w_l}{|F_l|} \leq \frac{1}{H_g} \cdot \frac{w_{j^*}'}{g}$$

for second element

$$\leq \frac{1}{H_g} \cdot \frac{w_{j^*}'}{g-1}$$

Total price paid by elements in F_{j^*}'

$$\leq \frac{1}{H_g} \cdot w_{j^*}' \left(\overbrace{\frac{1}{g} + \frac{1}{g-1} + \dots +}^{H_g} \right) = w_{j^*}'$$

$$F_{j^*} = \{e_{u_1}, e_{u_2}, \dots, e_{u_g}\}$$
$$\leq \frac{w_{j^*}}{g} \cdot \frac{1}{H_g} \leq \frac{w_{j^*}}{g-1} \cdot \frac{1}{H_g} + \dots$$

- Let g denote the maximum cardinality among the sets in \mathcal{F}
- **Theorem:** The greedy algorithm gives an H_g -approximation to the weighted set cover.

- Guarantee strictly better than H_n whenever $g < n$

□ Proof of Theorem

- We first construct a dual solution, i.e, set values for y_i for $i \in [n]$
- Assume that element e_i is covered for the first time when set F_j was added to the cover
- We set $y_i \leftarrow \frac{w_j}{|\widehat{F}_j|} \cdot \frac{1}{H_g}$

This is a feasible dual solution!

- Consider set F_j and its dual constraint: $y_{u_1} + y_{u_2} + \cdots + y_{u_k} \leq w_j$
- Elements $e_{u_1}, \dots e_{u_k}$ are covered for the first time in different iterations

- Consider set F_j and its dual constraint: $y_{u_1} + y_{u_2} + \dots + y_{u_k} \leq w_j$
- Elements $e_{u_1}, \dots e_{u_k}$ are covered for the first time in different iterations
- Let r denote the overall number of iterations of the greedy algo.
- Let $A_t \subseteq F_j$ be elements that got covered for the first time in t -th iteration
- Let a_t be the number of elements in F_j that are uncovered at the beginning of t -th iteration: $|A_t| = a_t - a_{t+1}$

$$\underbrace{y_{u_1} + y_{u_2} + \dots + y_{u_k}}_{\text{LHS of dual constraint of } F_j} = \sum_{t=1}^r \sum_{\substack{i: e_i \in A_t}} y_i$$

□ Let F_p be the set added by the greedy algorithm in t -th iteration

□ Then $y_i = \frac{w_p}{|\widehat{F}_p|} \cdot \frac{1}{H_g}$ for each $e_i \in A_t$ A_t ⊆ F_j that got covered for first time in t -th iteration

□ Now, $y_i = \frac{w_p}{|\widehat{F}_p|} \cdot \frac{1}{H_g} \leq \frac{w_j}{a_t} \cdot \frac{1}{H_g}$ for each $e_i \in A_t$ by the greedy property

by defn.
of dual
soln.

uncovered
elements in
F_j at the
beginning
of tth iteration

$p \in [m]$
 $t \in [x]$

□ Let F_p be the set added by the greedy algorithm in t -th iteration

□ Then $y_i = \frac{w_p}{|F_p|} \cdot \frac{1}{H_g}$ for each $e_i \in A_t$

□ Now, $y_i = \frac{w_p}{|F_p|} \cdot \frac{1}{H_g} \leq \frac{w_j}{a_t} \cdot \frac{1}{H_g}$ for each $e_i \in A_t$ by the greedy property

*

$$\sum_{i: e_i \in A_t} y_i \leq \frac{w_j}{H_g} \cdot \frac{|A_t|}{a_t} = \frac{w_j}{H_g} \cdot \frac{a_t - a_{t+1}}{a_t}$$

*

$$y_{u_1} + y_{u_2} + \dots + y_{u_k} = \sum_{t=1}^T \sum_{i: e_i \in A_t} y_i \leq \frac{w_j}{H_g} \cdot \sum_{t=1}^T \frac{a_t - a_{t+1}}{a_t}$$

$$\leq \frac{H}{|F_p|} \leq H_g$$

- We proved that the dual solution is feasible
- Can we say anything about the quality of the solution of the greedy algorithm based on this dual solution?

□ We proved that the dual solution is feasible

□ Can we say anything about the quality of the solution of the greedy algorithm based on this dual solution?

*
$$\sum_{i \in [n]} y_i = \frac{1}{H_g} \cdot \left(\sum_{j \in I} w_j \right)$$

? \downarrow

indices of sets in set cover (greedy)

= $\frac{1}{H_g} \cdot (\text{Cost of soln. output by greedy})$

*
$$\sum_{i \in [n]} y_i \leq \text{Value of optimal solution to primal}$$

\downarrow

Weak duality

LP \leq OPT

Cost of solution
output by greedy } $\leq H_g \cdot OPT$

When F_j gets added to greedy set cover,

$$y_i \leftarrow \frac{1}{H_g} \cdot \frac{w_j}{|F_j|} \quad \text{for each element } e_i \in F_j$$

$$\sum_{e_i \in F_j} y_i = \frac{w_j}{H_g} \quad \left| \begin{array}{l} \sum_{e_i \in U} y_i \\ = \sum_{j \in I} \sum_{e_i \in F_j} y_i \end{array} \right.$$

Randomized Rounding

- Based on a random process determined by an optimal solution of the primal LP

LP:

$$\min \sum_{i \in [m]} w_i x_i$$

$$\sum_{i: e \in F_i} x_i \geq 1$$

$$x_i \geq 0$$

$$\forall e \in U \quad (P)$$

Randomized Rounding Algorithm

- Determine an optimal solution $\{x_j^*\}_{j \in [m]}$ to the primal LP
- $I \leftarrow \emptyset$

Randomized Rounding Algorithm

- Determine an optimal solution $\{x_j^*\}_{j \in [m]}$ to the primal LP
- $I \leftarrow \emptyset$
- For each $j \in [m]$:
 - for each set $F_j \in \mathcal{F}$
 - c is some constant
 - Consider a coin with Heads probability x_j^*
 - Toss the coin $c \ln n$ times independently of each other
 - If any of the tosses shows up Heads, then $I \leftarrow I \cup \{j\}$
- Output I as the set cover

$[0, 1]$

Randomized Rounding Algorithm

- Determine an optimal solution $\{x_j^*\}_{j \in [m]}$ to the primal LP
- $I \leftarrow \emptyset$
- For each $j \in [m]$:
 - Consider a coin with Heads probability x_j^*
 - Toss the coin $c \ln n$ times independently of each other
 - If any of the tosses shows up Heads, then $I \leftarrow I \cup \{j\}$
- Output I as the set cover

Theorem: The algorithm is a $O(\ln n)$ -approximation algorithm that produces a set cover with high probability

- What is the probability that the algorithm outputs a set cover?
- What is the probability that a specific element $e \in U$ is not covered?

Need a language to answer these questions concretely!

Brief Intro to Probability

- The probability space associated with a random process is defined by:

→ Countable or even finite

- Sample space Ω = Set of outcomes of the random process
- Set \mathcal{F} of allowable events; each event is a subset of Ω $\rightarrow \omega \in \mathcal{F}$
- A probability function $\Pr: \mathcal{F} \rightarrow [0,1]$ satisfying:

- For any event E , we have $\Pr[E] \in [0,1]$
- $\Pr[\Omega] = 1$ & disjoint
- For any countable sequence of events E_1, E_2, \dots we have $\Pr[\bigcup_{i \geq 1} E_i] = \sum_{i \geq 1} \Pr[E_i]$

- Two events E and F are independent iff $\Pr[E \cap F] = \Pr[E] \cdot \Pr[F]$

if & only if

- What is the probability that the algorithm outputs a set cover?
- What is the probability that a specific element $e \in U$ is not covered?

- For a set F_j a.t. $e \in F_j$, prob. that

F_j is not in the cover

$$= (1 - x_j^*)^{\text{cln } n}$$

- $\Pr(e \text{ is not covered}) = \prod_{j: e \in F_j} \Pr(F_j \text{ not picked})$

$$\Pr \left[\bigcap_{j: e \in F_j} F_j \text{ not picked} \right]$$

$\Pr(e \text{ is not covered})$

$$\boxed{1 - x \leq e^{-x} \text{ for } x \in [0, 1]}$$

$$\begin{aligned} &= \prod_{j: e \in F_j} (1 - x_j^*)^{\ln n} \\ &\leq \prod_{j: e \in F_j} e^{-x_j^* \cdot \ln n} \\ &= e^{-(\ln n) \sum_{j: e \in F_j} x_j^*} \\ &\leq \frac{1}{n^c} \end{aligned}$$

- What is the probability that there exists some element $e \in U$ that is not covered?
- Union Bound: For a countable sequence of events E_1, E_2, \dots

$$\Pr[\bigcup_{i \geq 1} E_i] \leq \sum_{i \geq 1} \Pr[E_i]$$

- What is the probability that there exists some element $e \in U$ that is not covered?
- Union Bound: For a countable sequence of events E_1, E_2, \dots

$$\Pr[\bigcup_{i \geq 1} E_i] \leq \sum_{i \geq 1} \Pr[E_i]$$

$\Pr(\text{output not a set cover}) = \Pr(\exists e \in U \text{ that is not covered})$

$$\frac{n^c}{n^c - 1} = \frac{1}{n^{c-1}}$$

- What is the weight of the set system output?
- Need the concept of random variables, which are functions $X: \Omega \rightarrow \mathbb{R}$
discrete random variable
- Expected value of X , denoted $E[X] = \sum_i i \cdot \Pr[X = i]$
- Linearity of expectations: $E[\sum_j X_j] = \sum_j E[X_j]$
 - For a constant c and a random variable X , we have $E[cX] = c \cdot E[X]$
- What is the expected weight of the set system output?

- $Y_j = 1$ if F_j is included in the output and $Y_j = 0$ otherwise, for $j \in [m]$

indicator & v.'s

- Weight of set system output $Y = \sum_{j \in [m]} w_j Y_j$

- Expected weight = $E[Y] = \sum_{j \in [m]} w_j E[Y_j]$ (defn. of exp.)

defn. of expectation

- $E[Y_j] = 1 \cdot \Pr[F_j \text{ is included in output}] + 0 \cdot \Pr[F_j \text{ is not included in output}]$

- $Y_j = 1$ if F_j is included in the output and $Y_j = 0$ otherwise, for $j \in [m]$
- Weight of set system output $Y = \sum_{j \in [m]} w_j Y_j$
- Expected weight = $E[Y] = \sum_{j \in [m]} w_j E[Y_j] \leq c \ln n \cdot \text{OPT}$
- $E[Y_j] = 1 \cdot \Pr[F_j \text{ is included in output}] + 0 \cdot \Pr[F_j \text{ is not included in output}]$

$$= 1 - (1 - x_j^*)^{c \ln n}$$

$$\leq x_j^* \cdot c \ln n$$

✓

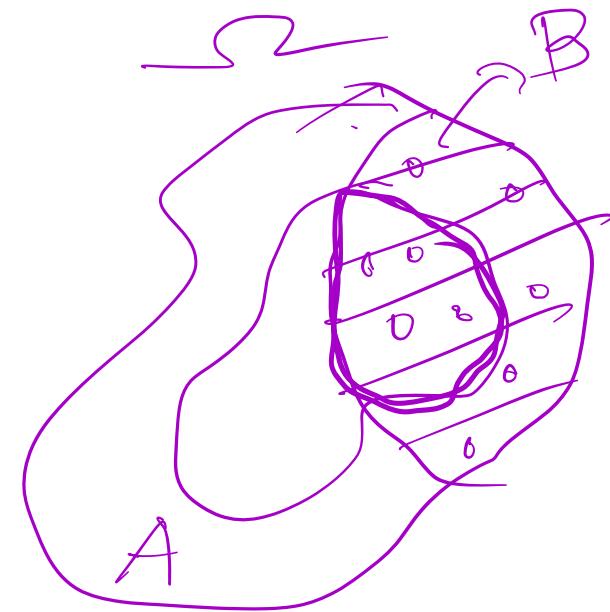
$$\boxed{(1 - x)^a \geq 1 - ax \quad \text{for } x \in [0, 1], a \geq 1}$$

- We want the expected weight, conditioned on the event that the set system output is a set cover...

- Conditional Probability: For two events A and B , we have

$$\Pr[A|B] = \frac{\Pr[A \cap B]}{P[B]}$$

- Conditional Expectation: $E[X|B] = \sum_i i \cdot \Pr[X = i|B]$



- We want the expected weight, conditioned on the event that the set system output is a set cover...

- Conditional Probability: For two events A and B , we have

$$\Pr[A|B] = \frac{\Pr[A \cap B]}{P[B]}$$

- Conditional Expectation: $E[X|B] = \sum_i i \cdot \Pr[X = i|B]$

- Let H be the event that the set system output is a set cover

$$E[Y] = E[Y|H] \cdot \Pr[H] + E[Y|\bar{H}] \cdot \Pr[\bar{H}] \geq \frac{1}{2} \cdot E[Y|H]$$

law of total expectation

$$\Rightarrow E(Y|H) \leq 2E(Y) \leq 2 \ln n \text{OPT}$$

$$\begin{aligned} \Pr(H) &\geq 1 - \frac{1}{n^{C-1}} \\ &\geq \frac{1}{2} \end{aligned}$$

Next Time:

Christofides' approx. algo.
for metric TSP

A